3 research outputs found

    Blockchain-Enabled Authenticated Key Agreement Scheme for Mobile Vehicles-Assisted Precision Agricultural IoT Networks

    Get PDF
    Precision Farming Has a Positive Potential in the Agricultural Industry Regarding Water Conservation, Increased Productivity, Better Development of Rural Areas, and Increased Income. Blockchain Technology is a Better Alternative for Storing and Sharing Farm Data as It is Reliable, Transparent, Immutable, and Decentralized. Remote Monitoring of an Agricultural Field Requires Security Systems to Ensure that Any Sensitive Information is Exchanged Only among Authenticated Entities in the Network. to This End, We Design an Efficient Blockchain-Enabled Authenticated Key Agreement Scheme for Mobile Vehicles-Assisted Precision Agricultural Internet of Things (IoT) Networks Called AgroMobiBlock. the Limited Existing Work on Authentication in Agricultural Networks Shows Passive Usage of Blockchains with Very High Costs. AgroMobiBlock Proposes a Novel Idea using the Elliptic Curve Operations on an Active Hybrid Blockchain over Mobile Farming Vehicles with Low Computation and Communication Costs. Formal and Informal Security Analysis Along with the Formal Security Verification using the Automated Validation of Internet Security Protocols and Applications (AVISPA) Software Tool Have Shown the Robustness of AgroMobiBlock Against Man-In-The-Middle, Impersonation, Replay, Physical Capture, and Ephemeral Secret Leakage Attacks among Other Potential Attacks. the Blockchain-Based Simulation on Large-Scale Nodes Shows the Computational Time for an Increase in the Network and Block Sizes. Moreover, the Real-Time Testbed Experiments Have Been Performed to Show the Practical Usefulness of the Proposed Scheme

    Smart Connected Farms and Networked Farmers to Tackle Climate Challenges Impacting Agricultural Production

    Full text link
    To meet the grand challenges of agricultural production including climate change impacts on crop production, a tight integration of social science, technology and agriculture experts including farmers are needed. There are rapid advances in information and communication technology, precision agriculture and data analytics, which are creating a fertile field for the creation of smart connected farms (SCF) and networked farmers. A network and coordinated farmer network provides unique advantages to farmers to enhance farm production and profitability, while tackling adverse climate events. The aim of this article is to provide a comprehensive overview of the state of the art in SCF including the advances in engineering, computer sciences, data sciences, social sciences and economics including data privacy, sharing and technology adoption

    Security and Privacy of Cyber-Physical Systems

    No full text
    Cyber-physical systems (CPS) interface the physical and digital realms and are thus highly prone to risks, attacks, and threats. This chapter studies the security requirements for cyber-physical systems. It also identifies the technologies that are used in the development of cyber-physical systems. The attacks and threats to which such systems are vulnerable are also studied. Finally, some state-of-the-art existing schematic solutions for achieving security in cyber-physical systems are studied in detail
    corecore